OmROn

PCB Relay

G5SB

Compact Single-pole Relay for

Switching 5 A (Normally Open Contact),

Fan Control of Air Conditioners, and Heating Control of Small Appliances.

■ Compact SPDT Relay with high insulation.
■ Incorporates a normally open contact that switches 5 A max.

■ Ensures a withstand impulse voltage of $8,000 \mathrm{~V}$ between the coil and contacts.

■ Conforms to UL and CSA.

- UL508

- CSA C22.2 (No.14)
- VDE (EN61810-1)

RoHS Compliant Refer to pages 16 to 17 for details.

Ordering Information

Classification	Contact form	Protective structure	Model
Standard	SPDT	Fully sealed	G5SB-14

Note: When ordering, add the rated coil voltage to the model number.
Example: G5SB-14 $\underline{12 \text { VDC }}$
Rated coil voltage

Model Number Legend:

G5SB- $-\frac{\square}{1} \frac{\square}{2} \frac{\square}{3}$ VDC

1. Number of Poles

1: SPDT
2. Protective Structure

4: Fully sealed
3. Rated Coil Voltage

5, 9, 12, 24 VDC

Specifications

■ Coil Ratings

Rated voltage	5 VDC	9 VDC	12 VDC	24 VDC
Rated current	80 mA	44.4 mA	33.3 mA	16.7 mA
Coil resistance	63Ω	202Ω	360Ω	$1,440 \Omega$
Must operate voltage	75% max. of rated voltage			
Must release voltage	5% min. of rated voltage			
Max. voltage	150% of rated voltage (at $23^{\circ} \mathrm{C}$)			
Power consumption	Approx. 400 mW			

■ Contact Ratings

Load	Resistive load
Rated load	$3 \mathrm{~A} \mathrm{(NO)/3} \mathrm{~A} \mathrm{(NC)} \mathrm{at} \mathrm{125} \mathrm{VAC}$
	$5 \mathrm{~A}(\mathrm{NO}) / 3 \mathrm{~A} \mathrm{(NC)} \mathrm{at} \mathrm{125} \mathrm{VAC}$
	$5 \mathrm{~A} \mathrm{(NO)} \mathrm{at} \mathrm{250} \mathrm{VAC}$
	$3 \mathrm{~A} \mathrm{(NC)} \mathrm{at} \mathrm{250} \mathrm{VAC}$
	$5 \mathrm{~A} \mathrm{(NO)/3} \mathrm{~A} \mathrm{(NC)} \mathrm{at} \mathrm{30} \mathrm{VDC}$
Contact material	Ag alloy (Cd free)
Rated carry current	$5 \mathrm{~A} \mathrm{(NO)/3} \mathrm{~A} \mathrm{(NC)}$
Max. switching voltage	$250 \mathrm{VAC}, 30 \mathrm{VDC}$
Max. switching current	$5 \mathrm{~A} \mathrm{(NO)/3} \mathrm{~A} \mathrm{(NC)}$
Max. switching capacity	$1,250 \mathrm{VA}, 150 \mathrm{~W}(\mathrm{NO})$
	$750 \mathrm{VA}, 30 \mathrm{~W}(\mathrm{NC})$
Failure rate (reference value)	10 mA at 5 VDC

Note: P level: $\lambda 60=0.1 \times 10^{-6}$ operation
■ Characteristics

Contact resistance (See note 2.)	$100 \mathrm{~m} \Omega$ max.
Operate time (See note 3.)	10 ms max .
Release time (See note 3.)	5 ms max.
Insulation resistance (See note 4.)	1,000 M 2 min.
Dielectric strength	4,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between coil and contacts $1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of same polarity
Impulse withstand voltage	$8 \mathrm{kV}(1.2 \times 50 \mu \mathrm{~s})$
Vibration resistance	Destruction: 10 to $55 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude (1.5-mm double amplitude) Malfunction: 10 to $55 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude (1.5-mm double amplitude)
Shock resistance	Destruction: $\quad 1,000 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 100G) Malfunction: Energized: $100 \mathrm{~m} / \mathrm{s}^{2}$ (approximately 10G) Non-energized: $100 \mathrm{~m} / \mathrm{s}^{2}$ (approximately 10G)
Endurance (See note 5.)	Mechanical: 5,000,000 operations (18,000 operations per hour) Electrical: 200,000 operations: 3 A (NO)/3 A (NC) at 125 VAC resistive load 50,000 operations: $\quad 5 \mathrm{~A}(\mathrm{NO}) / 3 \mathrm{~A}(\mathrm{NC})$ at 125 VAC resistive load 50,000 operations: $5 \mathrm{~A}(\mathrm{NO})$ at 250 VAC resistive load 100,000 operations: 3 A (NC) at 250 VAC resistive load 100,000 operations: 5 A (NO)/3 A (NC) at 30 VDC resistive load Switching frequency: 1,800 operations per hour
Ambient temperature	Operating: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ with no icing or condensation
Ambient humidity	Operating: 5\% to 85\%
Weight	Approx. 6.5 g

Note: 1. The data shown above are initial values.
2. The contact resistance is possible with 1 A applied at 5 VDC using a fall-of-potential method.
3. The operating time is possible with the operating voltage imposed with no contact bounce at an ambient temperature of $23^{\circ} \mathrm{C}$.
4. The insulation resistance is possible between coil and contacts and between contacts of the same polarity at 500 VDC.
5. The electrical endurance data items shown are possible at $23^{\circ} \mathrm{C}$.

Approved Standards

UL508 (File No. E41515)

CSA C22.2 (No. 14) (File No. LR31928)

Model	Coil ratings	Contact ratings	Number of test operations
G5SB	5 to 24 VDC	3 A, 125 VAC (resistive) NC only	6,000
		2 A, 125 VAC (resistive) NC only	
		5 A, 250 VAC (resistive) NO only	
		3 A, 250 VAC (resistive) NO only	
		5 A, 30 VDC (resistive) NO only	

[^0]VDE (EN61810-1) (Approval No. 40003957)

Model	Coil ratings	Contact ratings	Number of test operations
G5SB	$5,12,24 \mathrm{VDC}$	$5 \mathrm{~A}(\mathrm{NO}) / 3 \mathrm{~A}(\mathrm{NC}), 250 \mathrm{VAC}$	10,000

Engineering Data

Max. Switching Capacity

Ambient Temperature vs. Maximum Voltage

Dimensions

Note: All units are in millimeters unless otherwise indicated.

PCB Mounting Holes (Bottom View)
Tolerance: $\pm 0.1 \mathrm{~mm}$

Terminal Arrangement/ Internal Connections (Bottom View)

(No coil polarity)

Note: Values in parentheses are average values.

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

[^0]: Electrical endurance tests are performed at $70^{\circ} \mathrm{C}$.

