OmROn

PCB Relay

G6A

Fully Sealed Relay with High Impulse

Dielectric for Use in

Telecommunications Equipment
■ High sensitivity can be driven by digital circuits.

- Horizontal design allows use in 1/2-inch PCB racks.
■ Impulse withstand voltage meets FCC Part 68 requirements.
■ Relays can be mounted side-by-side due to low magnetic leakage.
■ Single- and double-winding latching relays also available.
■ Special models available for low thermoelectromotive force.

Ordering Information

Single-side Stable Type

Contact		Ag + Au-Alloy
General purpose	DPDT	G6A-274P-ST-US
	Low-sensitivity	

Single-winding Latching Type

Contact		Ag + Au-Alloy
General purpose	DPDT	G6AU-274P-ST-US

Double-winding Latching Type

Contact		Ag + Au-Alloy
General purpose	DPDT	G6AK-274P-ST-US
		G6AK-274P-ST40-US

Note: When ordering, add the rated coil voltage to the model number.
Example: G6A-274P-ST-US 12 VDC
Rated coil voltage

Model Number Legend

 \square vDC

$$
1
$$

1. Relay Function

None: Single-side stable
$\mathrm{U}: \quad$ Single-winding latching
K : Double-winding latching
2. Contact Form

2: DPDT
3. Contact Type

7: Bifurcated crossbar Ag (Au-Alloy) contact
4. Enclosure Ratings 4: Fully sealed
5. Terminals

P: Straight PCB
6. Stand-off

ST: Stand-off 0.64 mm
7. Special Function

40: Low-sensitivity (400 mW)
LT: Low thermoelectromotive force
8. Approved Standards

US: UL, CSA certified
9. Rated Coil Voltage

3, 4.5, 5, 6, 9, 12, 24, 48 VDC

Specifications

■ Coil Ratings

General-purpose, DPDT Relays

Rated voltage		3 VDC	4.5 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC	48 VDC
Rated current		66.7 mA	44.6 mA	40 mA	33.3 mA	22.2 mA	16.7 mA	8.3 mA	4.9 mA
Coil resistance		45Ω	101Ω	125Ω	180Ω	405Ω	720Ω	2,880 Ω	9,750 Ω
Coil inductance (H) (ref. value)	Armature OFF	0.07	0.16	0.2	0.29	0.63	1.1	4.5	13.7
	Armature ON	0.065	0.14	0.18	0.26	0.57	1.06	4.1	12.5
Must operate voltage		70\% max. of rated voltage							
Must release voltage		10\% min. of rated voltage							
Max. voltage		200\% of rated voltage at $23{ }^{\circ} \mathrm{C}$							
Power consumption		Approx. 200 mW							Approx. 235 mW

Low-sensitivity DPDT Relays

Rated voltage		3 VDC	4.5 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC	48 VDC
Rated current		133.3 mA	88.9 mA	80 mA	66.7 mA	44.3 mA	33.3 mA	16.7 mA	8.3 mA
Coil resistance		22.5Ω	50.6Ω	62.5Ω	90Ω	203Ω	360Ω	1,440 Ω	5,760 Ω
Coil inductance (H) (ref. value)	Armature OFF	0.03	0.065	0.08	0.11	0.27	0.52	2.1	7.5
	Armature ON	0.02	0.06	0.07	0.1	0.23	0.43	1.8	6.4
Must operate voltage		70\% max. of rated voltage							
Must release voltage		10\% min. of rated voltage							
Max. voltage		150% of rated voltage at $23^{\circ} \mathrm{C}$							
Power consumption		Approx. 400 mW							

Note:

1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
3. The maximum voltage is the highest voltage that can be imposed on the relay coil.

Single-winding Latching, DPDT Relays

Rated voltage		3 VDC	4.5 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC	48 VDC
Rated current		33.7 mA	22.2 mA	20 mA	16.7 mA	11.1 mA	8.3 mA	4.2 mA	2.5 mA
Coil resistance		89Ω	202Ω	250Ω	360 ת	810Ω	1,440 Ω	5,760 Ω	19,000 Ω
Coil inductance (H) (ref. value)	Armature OFF	0.15	0.34	0.44	0.64	1.38	2.5	9.2	28.5
	Armature ON	0.11	0.25	0.35	0.48	1.07	2	7.2	22
Must operate voltage		70\% max. of rated voltage							
Must release voltage		70\% max. of rated voltage							
Max. voltage		200\% of rated voltage at $23{ }^{\circ} \mathrm{C}$							
Power consumption		Approx. 100 mW							Approx. 120 mW

Double-winding Latching, DPDT Relays

Rated voltage			3 VDC	4.5 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC	48 VDC
Rated current			66.7 mA	40.2 mA	36 mA	30 mA	20 mA	15 mA	7.5 mA	4.2 mA
Coil resistance			45Ω	112Ω	139 ,	200Ω	450Ω	800Ω	3,200 Ω	11,520 Ω
Coil inductance (H) (ref. value)	Set	Armature OFF	0.037	0.09	0.11	0.16	0.38	0.6	2.1	8.5
		Armature ON	0.027	0.065	0.08	0.12	0.28	0.45	1.5	6.3
	Reset	Armature OFF	0.027	0.065	0.08	0.12	0.28	0.45	1.5	6.3
		Armature ON	0.037	0.09	0.11	0.16	0.38	0.6	2.1	8.5
Must operate voltage			70\% max. of rated voltage							
Must release voltage			70\% max. of rated voltage							
Max. voltage			200% of rated voltage at $23^{\circ} \mathrm{C}$							
Power consumption			Approx. 200 mW	Approx. 180 mW						Approx. 200 mW

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
3. The maximum voltage is the highest voltage that can be imposed on the relay coil.

Double-winding Latching, Low-sensitivity DPDT Relays

Rated voltage			3 VDC	4.5 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC	48 VDC
Rated current			120 mA	79.9 mA	72.5 mA	60 mA	40 mA	30 mA	15 mA	7.5 mA
Coil resistance			25Ω	56.3Ω	69Ω	100Ω	225Ω	400Ω	1,600 Ω	6,400 Ω
Coil inductance (H) (ref. value)	Set	Armature OFF	0.015	0.04	0.05	0.07	0.16	0.28	1.1	4
		Armature ON	0.01	0.025	0.035	0.05	0.12	0.2	0.75	2.9
	Reset	Armature OFF	0.01	0.025	0.035	0.05	0.12	0.2	0.75	2.9
		Armature ON	0.015	0.04	0.05	0.07	0.16	0.28	1.1	4
Must operate voltage			70\% max. of rated voltage							
Must release voltage			70\% max. of rated voltage							
Max. voltage			150% of rated voltage at $23{ }^{\circ} \mathrm{C}$							
Power consumption			Approx. 360 mW							

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
3. The maximum voltage is the highest voltage that can be imposed on the relay coil.

- Contact Ratings

Item	G6A-274P-ST(40)-US	
Load	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Resistive load } \\ (\cos \phi=1) \end{array} \\ \hline \end{array}$	Inductive load $(\cos \phi=0.4 ; \mathrm{L} / \mathrm{R}=7 \mathrm{~ms})$
Rated load	$\begin{aligned} & 0.5 \mathrm{~A} \text { at } 125 \mathrm{VAC} ; \\ & 2 \mathrm{~A} \text { at } 30 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 0.3 \mathrm{~A} \text { at } 125 \mathrm{VAC} \\ & 1 \mathrm{~A} \text { at } 30 \mathrm{VDC} \end{aligned}$
Contact material	Ag (Au-Alloy)	
Rated carry current	3 A	
Max. switching voltage	250 VAC, 220 VDC	
Max. switching current	2 A	1 A
Max. switching power	$125 \mathrm{VA}, 60 \mathrm{~W}$	62.5 VA, 30 W
Failure rate (reference value)	0.01 mA at 10 mVDC	
Item	G6AK-274P-ST(40)-US/G6AU-274P-ST-US	
Load	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Resistive load } \\ (\cos \phi=1) \end{array} \\ \hline \end{array}$	Inductive load ($\cos \phi=0.4 ; \mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$)
Rated load	$\begin{aligned} & \text { 0.5 A at } 125 \mathrm{VAC} ; \\ & 2 \mathrm{~A} \text { at } 30 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 0.25 \mathrm{~A} \text { at } 125 \mathrm{VAC} \text {; } \\ & 1 \mathrm{~A} \text { at } 30 \mathrm{VDC} \end{aligned}$
Contact material	Ag (Au-Alloy)	
Rated carry current	3 A	
Max. switching voltage	250 VAC, 220 VDC	
Max. switching current	2 A	1 A
Max. switching power	$125 \mathrm{VA}, 60 \mathrm{~W}$	62.5 VA, 30 W
Failure rate (reference value) (See note.)	0.01 mA at 10 mVDC	

Note: P level: $\lambda_{60}=0.1 \times 10^{-6} /$ operation
This value was measured at a switching frequency of 60 operations $/ \mathrm{min}$ and the criterion of contact resistance is 50Ω. This value may vary depending on the switching frequency and operating environment. Always double-check relay suitability under actual operating conditions.

■ Characteristics

Contact resistance（See note 1．）	$50 \mathrm{~m} \Omega$ max．
Operate（set）time（See note 2．）	Single－side stable types： 5 ms max．（approx． 3 ms ） Latching types： 5 ms max．（approx． 2.5 ms ）
Release（reset）time（See note 2．）	Single－side stable types： 3 ms max．（approx． 1.2 ms ） Latching types： 5 ms max．（approx． 2.5 ms ）
Min．set／reset signal width	10 ms min ．
Max．operating frequency	Mechanical：36，000 operations／hr Electrical：1，800 operations／hr（under rated load）
Insulation resistance（See note 3．）	1，000 M 2 min．（at 500 VDC ）；except for set－reset
Dielectric strength	1，000 VAC， $50 / 60 \mathrm{~Hz}$ for 1 min between coil and contacts 1，000 VAC， $50 / 60 \mathrm{~Hz}$ for 1 min between contacts of different polarity 1,000 VAC， $50 / 60 \mathrm{~Hz}$ for 1 min between contacts of same polarity 250 VAC， $50 / 60 \mathrm{~Hz}$ for 1 min between set and reset coils
Impulse withstand voltage	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$（conforms to FCC Part 68）
Vibration resistance	Destruction： 10 to 55 to $10 \mathrm{~Hz}, 2.5-\mathrm{mm}$ single amplitude（ $5-\mathrm{mm}$ double amplitude） Malfunction： 10 to 55 to $10 \mathrm{~Hz}, 1.65-\mathrm{mm}$ single amplitude（3．3－mm double amplitude）
Shock resistance	Destruction： $1,000 \mathrm{~m} / \mathrm{s}^{2}$（approx．100G） Malfunction： $500 \mathrm{~m} / \mathrm{s}^{2}$（approx．50G）
Endurance	Mechanical：100，000，000 operations min．（at 36，000 operations／hr） Electrical：500，000 operations min．（at 1，800 operations／hr）
Ambient temperature	Operating：$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$（with no icing）
Ambient humidity	Operating：5\％to 85\％
Weight	Approx． 3.5 g

Note：The data shown above are initial values．
Note：1．The contact resistance was measured with 10 mA at 1 VDC with a voltage drop method．
2．Values in parentheses are actual values．
3．The insulation resistance was measured with a 500－VDC megohmmeter applied to the same parts as those used for checking the dielectric strength（except between the set and reset coil）．

Approved Standards

UL（File No．E41515）／CSA（File No．LR31928）

Model	Contact form	Coil ratings	Contact ratings
G6A－274P－ST（40）－US	DPDT	3 to 48 VDC	0.6 A，125 VAC
G6AK－274P－ST（40）－US			2 A，30 VDC
G6AU－274P－ST－US			0.6 A，110 VDC

Engineering Data

Maximum Switching Power

Endurance

Ambient Temperature vs. Maximum Coil Voltage

Note: The maximum coil voltage refers to the maximum value in a varying range of operating power voltage, not a continuous voltage

Dimensions

Note：1．All units are in millimeters unless otherwise indicated．
2．Orientation marks are indicated as follows：

电话：0755－83233025 http：／／www．szdahao．com http：／／www．very－tec．com

G6A－274P－ST（40）－US

Terminal Arrangement／ Internal Connections Bottom View）

G6AK－274P－ST（40）－US

G6AK－274P－ST（40）－US

Terminal Arrangement／
Internal Connections
（Bottom View）

G6AU－274P－ST－US

Terminal Arrangement／ Internal Connections （Bottom View）

＊Average value

Mounting Holes （Bottom View）
Tolerance：± 0.1

Eight，1．0－dia．holes

10.1 max．

＊Average value

Mounting Holes
（Bottom View）
Tolerance：± 0.1

Mounting Holes
（Bottom View）
Tolerance：± 0.1

Precautions

Long－term Continuously ON Contacts

Using the Relay in a circuit where the Relay will be ON continu－ ously for long periods（without switching）can lead to unstable contacts because the heat generated by the coil itself will affect the insulation，causing a film to develop on the contact surfaces． We recommend using a latching relay（magnetic－holding relay）in this kind of circuit．If a single－side stable model must be used in this kind of circuit，we recommend using a fail－safe circuit design that provides protection against contact failure or coil burnout．

Relay Handling

When washing the product after soldering the Relay to a PCB， use a water－based solvent or alcohol－based solvent，and keep the solvent temperature to less than $40^{\circ} \mathrm{C}$ ．Do not put the Relay in a cold cleaning bath immediately after soldering．

Double－swicthing load in two poles

Double－switching in two poles as shown in the figure below，one pole and two pole interval may become MBB（Make Before Break）mechanically according to the timing of the point of con－ tact switching（By the short－circuit mode），and the malfunction might be caused．
In such a circuit，direct electric switching should be avoided，and concern for contact to be carried after the contact of Relay abso－ lutely switches in condition of no load．

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS．

To convert millimeters into inches，multiply by 0.03937 ．To convert grams into ounces，multiply by 0.03527 ．

Cat．No．K020－E1－09

